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Simulation of magnetic resonance static powder spectra is per-
formed by a (possibly weighted) summation of single-crystal spec-
tra computed for different orientations of the external field with
respect to the principal axes of the magnetic interactions. The
many available methods differ in the choice of the integration
points (i.e., orientations) and weights, the set of which is called
spherical code. There is continuing interest in minimizing the
number of integration points necessary to a good simulation.
Neglecting the possible interpolation of transition frequencies and
intensities between integration points, we turn our attention to the
efficiency of spherical codes themselves. To this end, an unbiased
quantitative procedure to assess their efficiency in simulating
magnetic resonance static powder spectra is proposed. To achieve
an impartial judgement, the procedure has been designed by care-
fully taking into consideration the following points: choice of exact
reference spectra; accurate definition of the merit figures; extended
range of number of integration points; orientation dependence of
the efficiency. The proposed procedure has been applied to an
inclusive set of 23 spherical codes. It was found that most codes
perform rather similarly. SPIRAL is the most efficient code,
whereas Monte Carlo and “repulsive” codes show the best rota-
tional invariance of the simulated lineshape with respect to the
orientation of the spherical code. © 1999 Academic Press

Key Words: spectral simulation; static powder lineshape; spher-
ical code.

INTRODUCTION

Solid-state nuclear and electronic magnetic resonance s

of a single crystal. Because of the anisotropy of the magne
interactions, spectra of powder samples are often poorly |
solved. For this reason, reliable information can be extract
from powder spectra only by iterative fitting or, at least, acct
rate simulation.

Both simulation and fitting require computation of the line
shape for many sets of spectral parameters. Since analy
expressions for powder lineshapes are known only for a fe
simple cases, one must resort to numerical techniques. Up
now this problem has been tackled by the summation of sing
crystal spectra computed for a number of different orientatiol
of the external field with respect to the principal axes of th
magnetic interactions. As the bottleneck of the spectral sy
thesis is the calculation of transition frequencies and intensiti
at each orientation from the eigenvalues and -vectors of t
spin Hamiltonian, reducing the number of diagonalizations &
carefully choosing the set of orientations (and their weight:
has been a subject of continuing interest. As a result, ma
such sets have been proposdd-10, which, following the
mathematical nomenclature, we call spherical codes. There
another important method to speed up powder averagir
namely, local interpolation of transition frequencies and intel
sities (, 3, 4, 6, 8, 11 However, to keep the paper to a rea
sonable length, we defer the study of interpolative methods
a future paper.

Two quantitative comparisons of spherical codes have be
recently reportedq, 10. In the former eight spherical codes

ve been compared with regard to efficiency for the simul

troscopies are powerful methods to gather Iinformation abo&gn of MAS spectra. Since it was shown that the efficienc

molecular structure and dynamics. Ideally, one would study

single-crystal sample, since in such case resolution is usu erical code is defined with respect to the axes of
_suff|C|er_1t to obtain the matr!ces of the anisotrapic magne gnetic interactions, the insensitivity of the efficiency to thi
interactions. Unfortunately, single crystals are often difficult QL

. . ; ) elative orientation has been used as merit criterion. The ne
impossible to prepare, but solid substances may be availabl ULSION code turned out to be the most efficient in th

polycrystallir_1e powder, that is, a collection of tiny CryStaI_?ange of 50-250 points, relevant for the simulation of MAS
rz_indomly orl_ented N Space. SFJCh a PO_WO‘” s_ample COMPr¥actra. In the latter study, several spherical codes have b
differently oriented but otherwise identical spin systems an sed to compute the frequency-independent amplitude of M

therefore, a powder spectrum is the superposition of the V&lfiebands and their efficiency has been assessed. A code b

many spectra which, in principle, could be obtained by rotatiocﬂ,] Gaussian spherical quadrature proved to be the fast

method up to about 400 points. However, a quantitative cor
parison of spherical codes with reference to the efficiency f

%ends on the orientation of the reference frame in which t
a
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the simulation ofstatic powder spectra is still lacking. Of tion can be performed analyticall{?)]. Thus, Eq. [2] reduces
course, being the simulated function different, it is possible thtt an integration over the surface of the unit sphe®d).(
spherical codes rank in an order different from that in RefMoreover, since the static spin Hamiltonian is invariant als
(9, 10. Moreover, static powder spectra may require marfgr space inversion oB,, the integration may always be
more orientations then MAS spectra or sideband amplitudmnfined to a unit hemisphere:
especially when there is large anisotropy and small homoge-
neous linewidth, and this can deeply affect the efficiency of L om
spherical codes. S(w) = zj do sin ef do s(w; 0, ). [3]

In conclusion, the aim of this paper is (1) to propose an I, 0
unbiased quantitative procedure to assess the efficiency of

spherical codes in simulating magnetic resonance static POWBgkh e\ reduction of the integration region is possible when t

spectra and (2) to apply the proposed protocol to an inclusi¥;y pamiltonian possesses additional symmet).(As the
set of spherical codes. The scope of the paper is limited to t@g

ici ¢ epherical codes in the simulati : p uble integration in Eq. [3] cannot be carried out analyticall
efficiency of spherical codes in the simu atlonsmatppow €r except for a few cases, one can know the integral func{es)
spectrawithout interpolation of transition frequencies and in

" ) only at a finite set of frequencies,, (m = 1, ..., M) by
tensities. The plan of the paper is as follows: In the next SeCt'QBé)roximating theVl integralsS(w,,) as
f m,

the assessment procedure is developed after a short survey
the theory of powder averaging. Then, the spherical codes are

categorized and briefly described. Next, the results of extensive N

spectral simulations employing these codes are analyzed by the Swn) = 2 Wi S(@m; 60, b)) = In(wn), [4]
proposed procedure. Finally, the main conclusions are summa- =

rized.
whereN is the number of orientations (i.e., integration point:

on S°) in the spherical code, and)( ¢;) are the spherical
coordinates of théh integration point with normalized weight

We begin this section by briefly recalling the theory ofVi- From Eq. [1] it can be seen that the integrad ; 0, ¢:)
powder averaging in magnetic resonance. Consider a refereffcBeaked about a narrow stripe $f where
frame fixed in the laboratory (LRF) and I€l represent the
orientation of a crystallite with respect to the LRF. In general, |o(0i, b)) — wn| = A(6;, ), (5]
the spectruns due to a crystallite with orientatiof can be
written as so that most of the integrand evaluations do not contribute
Iv(wy). For this reason, the approximate integration [4] is ver
s(w: Q) =S AQ) f[w — wy(Q), A(Q)], [1] demanding and standard numerical integration methods ¢
vised for smooth functions, such as Gaussian quadrature me
ods, are inefficient. To overcome this problem, powder ave

where o is the frequency,mo, A, A are the orientation- aging in the context of magnetic resonance has always be

dependent position, width, and amplitude, respectively, of eaeﬁrformed by a multiplex algarithm that explaits all integran

line of the spectrum, anfdis the shape of the component line ?valuations. As a preliminary step, the frequency interval

Assuming an isotropic distribution of the crystallites, the poantereSt Is divided intM subintervals of constant width and

der spectrunS is obtained by averaging over all possible centered aboub,. T_hen, _the line position and ampll'Fude are
orientations of the crystallite: evaluated at one orientation and the product of the line amp

tude and the weight coefficient is added to the subinterval

which the computed, falls. The procedure is repeated for all

J s(w; ©)dO 2] orientations in the chosen spherical code and finally the ai

Jda plitudes accumulated in the subintervals approximate the po

der lineshape. Clearly, no integrand evaluation is lost adthe

In practice, one considers the equivalent problem where timegrals|(w,) are calculated together. The scope of thi

crystallite is held fixed and the LRF assumes all possibpmper is limited to this multiplex algorithm and does no

orientations() with respect to a reference frame fixed to thenclude other subsidiary methods such as interpolatic
crystallite (CRF). The orientatiof2 is completely representedschemes.

by the polar ) and azimuthal ) angles ofB, in the CRF, In the present work, we try to keep an unbiased judgment |

since the Hamiltonian is invariant under rotation ab&yt (1) comparing simulated spectra with exact references; (

[The anisotropic dependence of the spectral amplitude on thecurately defining the merit figures; (3) exploring a range «

exciting fieldB, is neglected since the corresponding integrdN appropriate also for demanding simulations; (4) separate

ASSESSMENT PROCEDURE

lines

S(w) =
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FIG. 1. Schematic illustration of the convergence limit of the approximat; . .
lineshapely(w,). The value of true spectrur(w) (thick curve) at the §UChD(N) equally weights the error from different parts of the

subinterval centem,, is marked by a black square, whereas the aveR{gs,) spe_ctrum Since. it contains the sum of the squanadtive

of S(w) over the subinterval is represented by a horizontal line. The hatchi@siduals. The discrepancy has been measured for2", n =
circles underS(w) represent the result of the multiplex integration algorithmg8, 9, ..., 20, that is, 256 N = 1,048,576, aange large
i.e., the orientations at which the resonance frequengyalls in the subin- enough to fuIIy exploit the spherical codes and to cover d

terval. The valud \(w,,) of the simulated spectrum is the number of circle . . . A
divided by the subinterval width. Wheis large,l (w) converges tR(wn) ‘manding simulations such as those of large-anisotropy tran

rather than toS(w,), as can be easily seen by reordering the circles into %ON-ioN .EPR spectra. The efficiency of a spherical code
rectangular array (open circles). HenBéw,,) is the appropriate reference for Summarized by the convergence ratend the prefactop that
comparison with simulated spectra. are obtained by a least-squares fit to the model power-I

equation

discussing the efficiency and its orientation dependence. The

procedure implementing the above points is now described in D(N) = pN". [8]
some detail. It is important that numerically integrated spectra

be compared with an unbiased reference spectrum. The usual

practice of using a spectrum simulated with a very laxgas The efficiency of spherical codes has to be studied fi
a reference is prone to systematic error. Indeed, such a refiiifferent orientationdl, (g = 1, ..., Q) of the reference
ence favors spectra simulated by the same type of code overftiagne in which the spherical codes are constructed with resp
other ones; moreover, the latter are not correctly assessed siocéhe CRF, where each orientation is represented by thr
they are ranked by their similarity to the reference code and riatiler angles ¢, B, v) (16). Note that the symmetry of the
to the true spectrum. To build a correct reference, one haspt@blem allows us to choose tlig, within 0 < «, B8, y = w/2.
find an exact formula for the powder lineshape. When the spiihen there is a single dominating anisotropic interaction
Hamiltonian only consists of the rhombic Zeeman interactionhen several interactions share their principal axes, we ¢
(w1 # w, # ws), the analytical powder lineshape is availablnterested in finding thdll , which yields the best efficiency. In
both for the secularl®) and for the nonsecular Hamiltonianthis case, Eqgs. [7] and [8] are sufficient to analyze the eff
(14, 19, with é-function component lineshape. At the best ofiency orientation by orientation. When several anisotrop
our knowledge, exact powder lineshape expressions for mameeractions with noncoincident principal axes are present, ea
complex spin Hamiltonians with rhombic symmetry have naif them is differently oriented with respect to the CRF. In suc
been obtained. We therefore choose both secular and nonsecsituation, one would know the average efficiency of th
lar fully rhombic spectra as reference. Full rhombicity, aspherical code, and also if and to what extent spectral featu
opposed to the,—w, # w,—w; case, and-function lineshape, due to different interactions are reproduced with unequal a
as opposed to broader and smoother shapes, provide a nooacy, because this is a source of systematic egjot{ order
stringent test that should best discriminate between the spherassess the average efficiency of the code, we compute
ical codes. Finally, it must be taken into account that, for largeean discrepancy

N, Iy(w,) does not converge t& w,), but rather to the

average of5(w) over themth subinterval, as pictured in Fig. 1.

Accordingly, the simulated spectrum must be compared with 1 9
the reference spectruR(w,,) obtained as D(N) = 6 z D(N, TI,), [9]
q=1
1 omt+A/2
Rlwm) = AJ S(w)do. [6] whereD(N, II,) is the discrepancy of a spherical code witt

o A/2 orientationII, and N integration points, and model it to the

power law in Eq. [8]. The rotational invariance may be studie
As basic figure-of-merit, we use the discrepamx{N) be- by computing the relative standard deviation of the discrepan
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2(N)=U[DD(($)] T2 s
. RER SRR S SIS S
b LE [D(N, IIy) — D(N)]? [10]
DN Y Q-1 .27 | -2
-7 0 T

which measures the relative spread of the discrepancy about b
mean. A global measure of the rotational invariance of the
efficiency is the mean relative standard deviation

o[D(Ny]
D(NJ

M =

< 1
E_R [11]

k

1

whereK is the number of spherical codes of different di¢e
The efficiency of an ideal code does not dependlorthat is,
2(N) =2 =0.

SPHERICAL CODES ) - . .
FIG. 2. Inverse cartographic projections used to transform integratio

. . . . . _points from a planar region (left) to the upper half of the unit sphere (right
The efficiency of the above described multiplex mtegratlo;he integration points (dots) constitute an open rectangular grid to which t

algorithm relies on the choice of the spherical code, that is, th&al meridian—parallel grid is superimposed. (a) Plate-gamgection; (b)
integration points €;, ¢;) and the weightsv;. All spherical Lambert cylindrical projection; (c) sinusoidal projection. The projected code
codes that were found in the literature have been considerediff¢r especially in the polar region, where points are too crowded (a), tc
all their variants; besides, spherical codes based on the Sob8P2rse (b), and evenly distributed (c).
Antonov—Saleev method.{) and codes from Refs9( 10, 1§
have been applied for the first time to the simulation of powder
spectra. In total, 23 codes have been studied. In this section,‘ffmih transforms the-7 < x = 7, —1 =y = 1 rectangle
spherical codes are only briefly described and the readertGsS by
referred to the literature for further detail; explicit formulas,
which cannot be found in the literature, are given in the ¢ =X, 0= arccosy), [13]
Appendix. Spherical codes can be divided into two groups:
codes adapted from methods of integration on a two-dimemAd the sinusoidal, which maps ther sin(y) < x = =
sional planar region, and codes devised for integration on thie(y), 0 = y = = region toS* by
unit sphere. We begin considering the former group.

Several planar integration methods have been applied to X
powder averaging by mapping the integration points from the ¢ = siny)’ 6=y. [14]
plane onto the unit sphere by means of an inverse cartographic
projection (L9, 20. The simplest choice is the plate-Cap®-
jection that maps the-7m < x = 7, 0 = y = 7 rectangle to
S by the transformation

The Lambert cylindrical projection of a rectangular grid, al
ready known as equator centered g&il ¢r spherical grid9),
accounts for the approaching meridians by taking equal steps
cos() instead off (see Fig. 2b). The sinusoidal projection of
d=x, 0=y. [12] a rectangular grid, already known as polar centered &ioi(
igloo method 8), compensates the approaching meridians t
For instance, the spherical code obtained by plate-qganwe making the number of-steps along a parallel proportional to
jection of a rectangular grid, also known as the apple-peéle length of the parallel itself, as can be seen in Fig. 2c. Mal
method @), is portrayed in Fig. 2a. Each point is given amther cartographic projections are known, but a preliminal
additional weightv; = sin(6;) to account for the approachingsurvey indicated that significant improvement over the thre
of the meridians near the poles, a fact that may degrade #imve projections should not be expected. Therefore, thi
performance of the underlying method. Conversely, equal-amifferent spherical codes (labeled PC, Cyl, and Sin) can |
projections do not require additional weight factors. Amongenerated from each of the methods described in the followir
these, the two most widespread are the Lambert cylindrical, The familiar rectangular grid method.,(4) consists in di-
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FIG. 3. Examples of spherical codes on the upper half of the unit sphere. For the sake of blasitgtnall and the meridian—parallel grid is also visible.
(a) Open PC grid = 150); (b)open Cyl grid (160); (c) open Sin grid (159); (d) closed PC grid (150); (e) closed Cyl grid (160); (f) closed Sin grid (1!
(9) PC MC (160); (h) Cyl MC (160); (i) Sin MC (174); (j) PC ZCW (158); (k) Cyl ZCW (158); (I) Sin ZCW (101); (m) PC SAS (160); (n) Cyl SAS (160);
Sin SAS (158); (p) open ASG (144); (q) closed ASG (144); (r) open SOPHE (144); (s) closed SOPHE (144); (t) FM (289); (u) REPULSION (232); (v
(151); (w) SPIRAL (160). FM and REPULSION codes are defined on the wlolgee text).

viding the integration region into equal subrectangles. Thantage does not plague the SAS method, where coordina
integration points are chosen at the centers (open form, Figsar2 generated by closed formulas.

and 3a—3c) or at the vertices (closed form, Fig. 3d—3f) of the The second group of spherical codes comprises the “oc
subrectangles. The Monte Carlo (MC, Fig. 3g—3i) meth®)d (hedral” Alderman—Solum-Grant (ASGB) and SOPHE &)
uses couples of uniformly distributed (pseudo)-random nuroedes, the “repulsive” codes by Fliege and Maier (FINI§)(
bers as the coordinates of the integration points. It is importaarid by Bak and Nielsen (REPULSIONY)( the spherical
to choose a good random-number generator to avoid as m@hussian-quadrature code by Lebedev (LEB) as applied
as possible correlation between the points, since this can pewder averaging by Edeand Levitt (0), and the SPIRAL
verely affect the efficiency. In the present work a 64-bitode 6, 24. The ASG code (Fig. 3p—3q) is obtained by firs
pseudo-DES hashing generatdr)is used. The quasi-randomdividing each face of the octahedron inscribed in the ur
methods such as that by Zaremba—Conroy—Wolfsberg (ZC¥hhere into equilateral triangles and then projecting the tria
Fig. 3j-3l) (21-23 optimized for anisotropic chemical-shiftgular mesh ontds’. The code comprises either the triangle
lineshape by Koons and co-workerg,(and that by Sobol'— vertices (closed form) or the centroids (open form). A goo
Antonov-Saleev (SAS, Fig. 3m-3ad)7), here applied for the approximation of the weight&; has been given. The SOPHE
first time to powder averaging, have found widespread usedade (Fig. 3r-3s) is obtained by partitioni§g into triangular
multidimensional numerical integration. The coordinates of thregions (which are not spherical triangles, however), similar
ZCW integration points are obtained by a global optimizationg the ASG code. Closed and open forms can be obtained
which becomes troublesome for very larte In fact, the before. At the best of our knowledge, accurate weights ha
largest available set in Ref/\hasN = 16,574.This disad- been computed here for the first time (see Appendix). The F
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and REPULSION codes (Fig. 3t—3u) are obtained by distril a b
uting points onS’ so that a target function is minimized. The O—pu— O
target function for FM is the sum of the inverse Euclidea q‘%. ‘5&
distances between the points (proportional to the electroste %_ s 8
potential energy), whereas for REPULSION it is the sum of tt| & 1 ' —":_{'E_ w5l La
inverse geodetic distances &h (length of great circle arcs). :;2 0" :;E *.faﬁ
Both codes are usually generated on the wis3jebut they can . 2 ‘Ré okl x By
be used as such to average over one haf’afince they lack LV e
an inversion center. The LEB code wibh orientations (Fig. 4 *
3v) is generated by requiring that all spherical harmonics -3 -3
orderL = L, be exactly integrated, wheld = (L + 2 l0g4(N) 6 [0g4(N)
1)%3. Therefore, an integral can be accurately computed w € = d =d
N orientations when the integrand can be accurately expres: 8 G_Lﬁ,}%
as a linear combination of the spherical harmonics up to a a.g_ 2,
including orderL .. The SPIRAL code (Fig. 3w) was first _ 4 %q el %
applied to powder averaging in Re€)( where the coordinates ea @ﬁ 'S: =N
of the integration points were obtained by optimization. Late gr a s
these coordinates were expressed analytically in the contex = -2 8 4 =2
magnetic resonance imagin@4j as follows. Consider the 8
spherical spiral defined by the parametric equations &
= 4 6 O 2 4 6
0 = arcco§t), ¢ = c arcsirt), e log,,(N) f log, (V)
-l=st=+1, c>m [15] 0 506 1
8 B
where 2r/c is the spiral turn and Qis the spiral length from -1 Y ™
the south to the north pole. This curve uniformly covgfsn @g 0 'SQ ey
the sense that equalintervals correspond to segments of thi gf o‘a__ gF '
unit sphere with equal area. To obtain a uniform discre ~ -2 s —-1
sampling ofS?, the integration points are chosen on the spir: Qg
at a distance equal to the spiral turn. The spiral subdivision c 3 2
be actually performed both in open and in closed form. Hov 4 2 4 6
ever, there is no noticeable difference between them ai log, ,(N) log,, (M)

therefore, only the open form is considered in the following.

. . FIG. 4. Logarithmic plots of the mean discrepanyagainst the number
Short C programs to generate the described spherlcal COdeSo%gintsN. The best-fit curves appear as straight dotted lines. (a) GRID codk

available at http://www.csrsrc.mi.cnr:tponti. Open (full) circles: open (closed) PC; open (full) squares: open (closed) C:
open (full) triangles: open (closed) Sin. (b) MC and SPIRAL codes. Circle:
RESULTS AND DISCUSSION MC PC; squares: MC Cyl; triangles: MC Sin; stars: SPIRAL. (c) ZCW code:

Circles: PC; squares: Cyl; triangles: Sin. (d) SAS codes. Circles: PC; squar

M . h b imulated for f ; triangles: Sin. (e) ASG and SOPHE codes. Open (full) triangles: ope
agnetic resonance spectra have been simulated for sed) ASG; open (full) circles: open (closed) SOPHE. (f) Circles: FM

rhombic Zeeman interaction, in both the secular and the nQfuares: REPULSION; triangles: LEB; note the different vertical range in th
secular case, witM = 100 points on the frequency axis anchanel.
N=2"(n=8,9,...,20)orientations. Some codes, namely
ZCW, FM, REPULSION, and LEB, can be found only for a
narrower range oN. Simulations have been carried out for a&iency difference between the secular and the nonsecular ce
set ofQ = 125 different orientations of the SCRF with respecthis equivalence suggests that the following discussion a
to the CRF consisting of a % 5 X 5 closed grid within the conclusions, rigorously valid only for powder lineshapes due
region 0= «, B, v = w/2 of the space of the Euler angles. This single Zeeman interaction, have a general validity for sta
closed grid covers the studied, (3, y) region well in the sense lineshapes. For the same reason, it suffices to report the res
that a refinement of the grid does not affect the average valuies.the nonsecular case. A logarithmic plot of the orientatior
In total, 32,250 powder spectra have been computed. ANeraged discrepandy(N) against the number of pointé is
computations have been performed by means of a Ssimown as Fig. 4. The best-fit lines are the dotted lines in Fig.
ULTRA-2 workstation. and the regressed parametprandr are reported in Table 1
The most general result is that there is no significant effdlong with the correlation coefficiens. It appears that the
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TABLE 1
Best-Fit Parameters r and p and Correlation Coefficient p from the Least-Squares Fit
of the Mean Discrepancy D(N) to Model Eq. [8]*

10° 10 min

Spherical code r p p N(D = 0.01) [N(D = 0.01)] s

Grid PC open —-0.71 =0.01 51 = 7 —0.9982 175+t 50 83 0.28+ 0.07
Grid Cyl open —-0.62 *=0.02 30 £ 5 —0.9964 410+ 170 103 0.40+ 0.10
Grid Sin open -0.74 £0.01 49 + 5 —0.9991 101+ 20 68 0.20+ 0.05
Grid PC closed —-0.73 =0.02 60 =10 —0.9974 142+ 48 87 0.25+ 0.06
Grid Cyl closed —-0.59 *£0.01 34 £ 2 —0.9994 1020t 180 191 0.29+ 0.07
Grid Sin closed —-0.70 £0.01 40 + 4 —0.9989 134+ 29 88 0.21+ 0.05
MC PC —0.497= 0.002 11.2+ 0.2 —0.9999 1360+- 80 992 0.08+ 0.01
MC Cyl —0.502= 0.001 10.6£ 0.1 —0.9999 1070t 50 772 0.07£ 0.01
MC Sin —0.499=+ 0.002 10.3+ 0.2 —0.9999 1090+ 70 850 0.07+ 0.01
ZCW PC —-0.62 = 0.02 21 = 3 —0.9966 216+ 78 119 0.16+ 0.08
ZCW Cyl —-0.63 *=0.02 19 = 2 —0.9970 175+t 59 84 0.17+ 0.10
ZCW Sin —-0.58 +£0.01 14 = 1 —0.9986 294+ 68 119 0.14+ 0.06
SAS PC —-0.69 = 0.02 42 =10 —0.9941 166+ 85 116 0.17+ 0.06
SAS Cyl —-0.70 £0.02 38 £ 8 —0.9950 127+ 60 97 0.15+ 0.05
SAS Sin —-0.66 = 0.01 28 = 4 —0.9981 174+ 51 119 0.11+ 0.03
ASG open -0.73 =0.01 57 = 6 —0.9988 147+ 34 87 0.30+ 0.03
ASG closed —-0.75 £0.01 71 £ 6 —0.9992 141+ 26 83 0.31+ 0.05
SOPHE open -0.71 £0.01 45 + 4 —0.9993 147+ 26 82 0.28+ 0.02
SOPHE closed —-0.75 =0.01 68 = 6 —0.9993 125+ 22 69 0.25+ 0.03
FM —0.532= 0.006 11.8t 0.4 —0.9995 600+ 100 297 0.08+ 0.01
REPULSION —0.554=+ 0.005 13.4+ 0.3 —0.9999 441+ 53 112 0.08+ 0.01
LEB —-0.51 =0.01 13.8+t 0.6 —0.9991 1310+ 330 172 0.26+ 0.04
SPIRAL -0.73 £0.01 41 = 4 —0.9993 83+ 15 55 0.20+ 0.07

#The number of pointdl necessary to achieve a mean discrepdhey 0.01, theminimumN to achieveD = 0.01within the studied region, and the mean
relative standard deviatioh are also reported. All errors are one standard deviation (see text for their significance).

mean discrepancy can be satisfactorily represented by th&he six grid spherical codes show marked differences b
power law Eq. [8] for all spherical codes. It is necessary tween themselves. The two cylindrical grids have a low eff
remark that the errors in Table 1 are largely overestimated bigncy mostly because of the small convergence rate, as
the least-squares method because the regression residualp@factor is rather low, while the plate-cara@d sinusoidal

not normally distributed. Therefore, the differences betweerrodes have a much better efficiency. The reason for this can
the parameters are more meaningful than it may appear at fif§ked back to the different uniformity of covering near th
sight. The interplay ofp and r may be confusing in the pole (see Figs. 2 and 3a—3f). The three Monte Carlo codes h:
assessment of the code efficiency. Therefore, we regresseddfigntially the same low convergence rate —0.5 typical of

number of points necessary to attdn = 0.01, and the these methods, which translates in a rather poor efficiency
minimumnumber of points needed to achidve= 0.01within powder averaging, despite the very good prefactor. In fact,

the studied set of orientations. The choice of 0.01 as referengg iaved = 0.01. MCcodes require about six times as man
discrepancy is somewhat arbitrary even if it corresponds t Bints as other C(,)des (but only two times fr= 0.1). The '

satisfactory agreement between simulated and true linesh ﬁ and Sin versions are almost equivalent and slightly sup

as shown in Fig. 5. Not to be misled by this arbitrary ChOiC?i’or to the plate-cafreThe quasi-random ZCW and SAS code:

these two quantities have been computed als®fer 0.1; as .. . . . .
. show similar efficiency since the differencesprandr almost
these do not show anything new, they are only touched upon’in e .
) . ) . . cancel. Unfortunately, the difficulty of computing ZCW code:
the following discussion. Finally, the mean relative standar

deviation ¥, of the orientation-averaged discrepancy (cf. Eg‘;kes unfeasible their extension below the thresholD of

[11]) is also reported in Table 1. The spherical codes are no) 3. Conversely, the, SAS codes, here applied for the fir
analyzed in some detail. time to powder averaging, can be easily computed also for ve

large N. They are slightly more efficient than the ZCW for
? Since we do not fit experimental noisy data to the correct model but exqot < (. 1. Thesuperiority of the cylindrical variant of the ZCW

data to an approximate model, the residuals do not follow a normal (Gaussi . .
distribution. Because of the rapid fall-off of the normal distribution, points tha%er SAS codes is due, on one hand, to the WEIghtS needed

are more-than-average displaced from the fitted curve cause a misleading plate-carrecode, which degrade performance, and, on th
overestimate of the parameter errors. other hand, to the fact that these method has been devised



SPHERICAL CODES FOR POWDER LINESHAPES 295

about 15%. Sinusoidal grid and SPIRAL codes have 20%,

a while SOPHE, ASG, LEB, and the other grid codes can val
up to 30%. Note, however, that the poor invariance of the LE
code is due to a single outlier at the larghist= 385. The Cyl
open grid feature§ = 40%. It should be noted that the codes
with the best rotational invariance also have the lowest pre

actors.
When there is one dominating anisotropy, the orientakion
b can be chosen at will. We therefore also looked for the orie

tations at which a minimuri\ is needed to achiev@ = 0.01
(see Table 1). Even if the efficiency range is compressed, t
rank based on the minimurN is the same as before. The
orientation at which the minimal value is reached cannot
easily rationalized (data not shown). The spherical codes c
be, however, divided in three groups. MC and SAS codes sh
little change within the G= «, B8, v = @/2 region; the LEB and
SPIRAL codes perform best when their principal axes coincic
with those of the anisotropic interaction; all other codes sho
their best efficiency when their principal axes wiot coincide
with those of the interaction.

Considering globally all spherical codes, the following con
clusions can be drawn. (1) Monte Carlo codes have low co

FIG._5. Comparisor_w of _simulgted powder lineshape foranonsecu_lar f_“'{)’ergence rates that yield a poor efficiency: More thafi 1(
rhomplc Zeema_m H_amlltonlan wlth the exact reference spectrum, pICtonaI(I:}ll’ientationS are needed to achieve a 1% discrepancy. Howey
showing the significance of discrepan®y = 0.1 andD = 0.01. (a) . . " .
Lineshape simulated by SPIRAL code with = 4000, resulting inD = they are almost independent of the relative orientation of tt
0.1055; (b)ineshape simulated by SPIRAL code with= 56,000 resuliing CRF and the SCRF. If one can afford a factor 6-10 in con
in D = 0.0100; (c)reference spectrum obtained by averaging the exapiutation time, a possible source of error in the determination
lineshape as in Eq. [6]. anisotropic interaction matrices can be avoided. Note that su

a factor reduces to about 2 for 10% achieved discrepant

a rectangular region and not for the oval region over which tiigecall also that the integration error can be computed only f
inverse sinusoidal projection is defined. The “octahedral’” ASthe Monte Carlo method. (2) Planar rectangular grids project
and SOPHE codes show high convergence rates betweenthe unit sphere by cylindrical projection, i. e., grids wit
—0.70 and—0.75. Their effect on the efficiency is, howevergqual steps in co8f and ¢, have found widespread use, buf
counteracted by the large prefactors. The slight differencesthrey are definitely among the worst spherical codes for powd
r andp almost vanish when we consids(D = 0.01),which averaging. In fact, they are less efficient than all other cod
is close to 140,000 for all four codes. The “repulsive” FM an¢except for MC) and their efficiency is very sensitive to the
REPULSION codes and the Gaussian-quadrature LEB coddative orientation of the CRF and the SCRF. (3) The othe
show very good prefactors (12—-14) but also low convergengead codes (except for open Sin), the ZCW, SAS, ASG, ar
rates close to-0.5. Therefore, their efficiency is rather pooiSOPHE codes perform similarly with respect to the efficienc
and close to that of MC codes. Finally, the SPIRAL code turribey require 1-3x 10° orientations to achiev® = 0.01.
out to be the most efficient. Its performance arises mainly frorlowever, they differ in the rotational invariance, the quas
the high convergence rate. random codes being the best ones. (4) For FM, REPULSIO

The relative standard deviatiab(N) does not show any and LEB we have to base our analysis on a rather limited ran
clear-cut trend as a function &f. The only discernible feature of N. Given this caveat, it can be concluded that these coc
is that it grows forN < 10* and then diminishes or remainshave a poor efficiency because of the low convergence ra
constant. Therefore, we now consider its m&aas a global However, their excellent prefactor and rotational invarianc
measure of the rotational invariance. First, it should be réxcept LEB) suggest that they should be good codes for le
marked that the sinusoidal form always shows a better invademanding tasks, such as simulation of rotating-powder spe
ance than the plate-car@nd cylindrical forms of spherical tra, since when the needéd is low the prefactor is more
codes adapted from bidimensional methods. The MC, FM, amdportant than the convergence rate. The efficiency of the
REPULSION codes show the best rotational invariance: Th&iodes could be better than expected fbr> 1000, but it is
efficiency can be expected to change less than 10% within thikely that they can be so extended, since it is very difficu
0 = a, B, v = @/2 region of the space of the Euler angles. Th® compute them. This is particularly true for FM and REPUL
SAS and ZCW codes rank second with an expected changest®N, which are generated by a nonlinear, nonconvex co
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strained global minimization1@) in the presence of an expo- j ]
nentially growing number of local minima. It has been X =+ | = 0,1,...,M;
estimated to be about 50 fbr= 100 and about 8000 fd¥ =

200 @5). Such extension is certainly a formidable task. (5) _ E

Open Sin grid and SPIRAL show the highest efficiendy= KM

0.01 isachieved by about (or less than)®1@oints. In both _
cases, their performance arises from a high convergence rate 1=
Unfortunately, their rotational invariance is not very good, a
fact probably related to the large prefactors.

k=0,1,...,M—j;

_ = KZivZi 2

= X = Yo Te=yxi+yitzi
1/6 vertex points

wy = r;° x | 1/2 edge points

1 face points

CONCLUSIONS P
-3+ 9+8(N—-1)
I . - M= . [A1]
A quantitative unbiased methodology to assess the efficiency 2

of spherical codes in powder averaging of magnetic resonance
spectra has been proposed. It has been applied to all publisfibeé Cartesian coordinates of the centroids of the mesh tric
spherical codes plus new ones based on the Sobol'—Antonales onS’ and the correspondent weights for the open form ¢
Saleev method. Equal simulation efficiency has been measutieel code are
for both nonsecular and secular spectra, an equivalence sug-
gesting that the present conclusions may have general validity. i—213 k —2/3
Most spherical codes (exceptions are Monte Carlo, cylindrical Xi =~y » | = 1,2,.... M) y= M
grid, “repulsive,” and Gaussian-quadrature codes) require _ )
1-3 X 10’ integration points to achieve 1% average discrep- k=1,2,...,M+1—] (UPtriangles
ancy (3—6x 10’ to reach 10%). Among these, open Sin grid j—1/3 k—1/3
and SPIRAL codes stand out for their efficiency. Itis striking X =——, 1=1,2,... M—=1; y,=—y—,
that the simple open Sin grid code is as efficient as the SPIRAL
and, even more, that it performs better than sophisticated k=1,2,...,M— | (DOWN triangleg
codes. However, one should also be aware that, with the above _ 3 M= N [A2]
exceptions, the studied codes differ at most by a factor of 3 in’ ko v
efficiency. As for the rotational invariance, the best codes ar% ,
the Monte Carlo and the “repulsive.” It is certainly disappoint’’ Ere z and e are defmeq as at_Jove. In both cases, t
ing that such codes show poor efficiency, but it should t;I.cs)ghtajr|c:al coordinates of the integration pointsS3rare easily
recalled that the computational effort they require may tained as
afforded, especially for easy simulations and/or large accept-
able discrepancy.

Finally, it seems unlikely that new spherical codes can B§opHE Codes
devised that largely outperform the known ones. To obtain a ) .
large improvement in powder averaging of magnetic resonance' Ne following formulas refer to the first octant &f; the
spectra, a new approach to the problem may be more fruitfGPde on the other octants can be obtained by symmietrig
Further investigations in this direction are presently beirf§§€ number of subintervals alorty In closed form, the inte-

0« = arcco$zy/ry), ¢y = arctaniy,/x;). [A3]

carried out in our laboratory26). gration points are the vertices of the pseudotriangular mest
j Kk =
APPENDIX T : _
0; Moo ] 0,1,... ,M; ¢y M—j2
In this appendix are collected detailed formulas that cannot k=0,1,...,M—j;

be easily found in the literature about powder averaging.
cog0) 1/6 vertex points
]

Alderman-Solum-Grant Codes Wik =M=+ 1 x { 1/2 edge points,
] 1 face points
The following formulas refer the first octant of the unit

: O+ aN—1)
sphere; the code on the other octants can be obtained by M = -3+ \9+8(N-1) ™
symmetry.M is the number of subintervals on each octahedron 2 '

edge. The Cartesian coordinates of the vertices of the triangular
mesh onS’ and the corresponding weights for the closed formvhereas in open form they correspond to the centroids of t
of the code are pseudotriangles forming the mesh:
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j—1
_ JTB k odd (UP pseudotrianglés
Ou=2 > 2/3 U
— k even(DOWN pseudotrianglgs
k—1/2
¢jk:ﬂ,121,2,---,|\/|; o
k=1,2,...,3-1
. 9
j o
COS(M 2)
ij = ﬂ, M = \JN. [A5] 10.

The weightswj, have been obtained by a modification of the;

procedure outlined in Ref8]. For the open form, the weight

w, is the area of the pseudotriangle surrounding the centroid
jk; for the closed form it is the pseudohexagonal region (du&?-

of the pseudotriangle) surrounding the verjkx

13.
SPIRAL Code (Open Form) "
i—1/2 '
ti:T, i=1,2,...,N
15.
0, = arccost)), ¢ = wN arcsint), w, = 1. [A6]

An analytic expression for the weights could not be founé.6
Therefore, a Voronoi tessellation & has been performed 17
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