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Simulation of magnetic resonance static powder spectra is per-
ormed by a (possibly weighted) summation of single-crystal spec-
ra computed for different orientations of the external field with
espect to the principal axes of the magnetic interactions. The
any available methods differ in the choice of the integration

oints (i.e., orientations) and weights, the set of which is called
pherical code. There is continuing interest in minimizing the
umber of integration points necessary to a good simulation.
eglecting the possible interpolation of transition frequencies and

ntensities between integration points, we turn our attention to the
fficiency of spherical codes themselves. To this end, an unbiased
uantitative procedure to assess their efficiency in simulating
agnetic resonance static powder spectra is proposed. To achieve

n impartial judgement, the procedure has been designed by care-
ully taking into consideration the following points: choice of exact
eference spectra; accurate definition of the merit figures; extended
ange of number of integration points; orientation dependence of
he efficiency. The proposed procedure has been applied to an
nclusive set of 23 spherical codes. It was found that most codes
erform rather similarly. SPIRAL is the most efficient code,
hereas Monte Carlo and “repulsive” codes show the best rota-

ional invariance of the simulated lineshape with respect to the
rientation of the spherical code. © 1999 Academic Press

Key Words: spectral simulation; static powder lineshape; spher-
cal code.

INTRODUCTION

Solid-state nuclear and electronic magnetic resonance
roscopies are powerful methods to gather information a
olecular structure and dynamics. Ideally, one would stu

ingle-crystal sample, since in such case resolution is us
ufficient to obtain the matrices of the anisotropic magn
nteractions. Unfortunately, single crystals are often difficu
mpossible to prepare, but solid substances may be availa
olycrystalline powder, that is, a collection of tiny cryst
andomly oriented in space. Such a powder sample comp
ifferently oriented but otherwise identical spin systems

herefore, a powder spectrum is the superposition of the
any spectra which, in principle, could be obtained by rota
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f a single crystal. Because of the anisotropy of the mag
nteractions, spectra of powder samples are often poorl
olved. For this reason, reliable information can be extra
rom powder spectra only by iterative fitting or, at least, ac
ate simulation.

Both simulation and fitting require computation of the li
hape for many sets of spectral parameters. Since an
xpressions for powder lineshapes are known only for a
imple cases, one must resort to numerical techniques.
ow this problem has been tackled by the summation of si
rystal spectra computed for a number of different orienta
f the external field with respect to the principal axes of
agnetic interactions. As the bottleneck of the spectral

hesis is the calculation of transition frequencies and inten
t each orientation from the eigenvalues and -vectors o
pin Hamiltonian, reducing the number of diagonalization
arefully choosing the set of orientations (and their weig
as been a subject of continuing interest. As a result, m
uch sets have been proposed (1–10), which, following the
athematical nomenclature, we call spherical codes. The
nother important method to speed up powder avera
amely, local interpolation of transition frequencies and in
ities (1, 3, 4, 6, 8, 11). However, to keep the paper to a r
onable length, we defer the study of interpolative metho
future paper.
Two quantitative comparisons of spherical codes have

ecently reported (9, 10). In the former eight spherical cod
ave been compared with regard to efficiency for the sim

ion of MAS spectra. Since it was shown that the efficie
epends on the orientation of the reference frame in whic
pherical code is defined with respect to the axes of
agnetic interactions, the insensitivity of the efficiency to

elative orientation has been used as merit criterion. The
EPULSION code turned out to be the most efficient in

ange of 50–250 points, relevant for the simulation of M
pectra. In the latter study, several spherical codes have
sed to compute the frequency-independent amplitude of
idebands and their efficiency has been assessed. A code
n Gaussian spherical quadrature proved to be the fa
ethod up to about 400 points. However, a quantitative c
arison of spherical codes with reference to the efficienc
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289SPHERICAL CODES FOR POWDER LINESHAPES
he simulation ofstatic powder spectra is still lacking. O
ourse, being the simulated function different, it is possible
pherical codes rank in an order different from that in R
9, 10). Moreover, static powder spectra may require m
ore orientations then MAS spectra or sideband amplit
specially when there is large anisotropy and small hom
eous linewidth, and this can deeply affect the efficienc
pherical codes.
In conclusion, the aim of this paper is (1) to propose

nbiased quantitative procedure to assess the efficien
pherical codes in simulating magnetic resonance static po
pectra and (2) to apply the proposed protocol to an inclu
et of spherical codes. The scope of the paper is limited t
fficiency of spherical codes in the simulation ofstaticpowder
pectrawithout interpolation of transition frequencies and
ensities. The plan of the paper is as follows: In the next se
he assessment procedure is developed after a short sur
he theory of powder averaging. Then, the spherical code
ategorized and briefly described. Next, the results of exte
pectral simulations employing these codes are analyzed
roposed procedure. Finally, the main conclusions are sum
ized.

ASSESSMENT PROCEDURE

We begin this section by briefly recalling the theory
owder averaging in magnetic resonance. Consider a refe

rame fixed in the laboratory (LRF) and letV represent th
rientation of a crystallite with respect to the LRF. In gene

he spectrums due to a crystallite with orientationV can be
ritten as

s~v; V! 5 O
lines

A~V! f @v 2 v0~V!, l~V!#, [1]

here v is the frequency,v 0, l, A are the orientation
ependent position, width, and amplitude, respectively, of

ine of the spectrum, andf is the shape of the component lin
ssuming an isotropic distribution of the crystallites, the p
er spectrumS is obtained by averagings over all possible
rientations of the crystallite:

S~v! 5
* s~v; V!dV

* dV
. [2]

n practice, one considers the equivalent problem where
rystallite is held fixed and the LRF assumes all poss
rientationsV with respect to a reference frame fixed to
rystallite (CRF). The orientationV is completely represente
y the polar (u) and azimuthal (f) angles ofB0 in the CRF
ince the Hamiltonian is invariant under rotation aboutB0.
The anisotropic dependence of the spectral amplitude o
xciting fieldB is neglected since the corresponding inte
1
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ion can be performed analytically (12)]. Thus, Eq. [2] reduce
o an integration over the surface of the unit sphere (S2).
oreover, since the static spin Hamiltonian is invariant

or space inversion ofB0, the integration may always b
onfined to a unit hemisphere:

S~v! 5
1

2p E
0

p/ 2

du sin u E
0

2p

df s~v; u, f!. [3]

urther reduction of the integration region is possible when
pin Hamiltonian possesses additional symmetry (10). As the
ouble integration in Eq. [3] cannot be carried out analytic
xcept for a few cases, one can know the integral functionS(v)
nly at a finite set of frequenciesvm (m 5 1, . . . , M) by
pproximating theM integralsS(vm) as

S~vm! > O
i51

N

wi s~vm; u i, f i! ; I N~vm!, [4]

hereN is the number of orientations (i.e., integration po
n S2) in the spherical code, and (u i , f i) are the spherica
oordinates of thei th integration point with normalized weig
i . From Eq. [1] it can be seen that the integrands(vm; u i , f i)

s peaked about a narrow stripe ofS2 where

uv0~u i, f i! 2 vmu < l~u i, f i!, [5]

o that most of the integrand evaluations do not contribu
N(vm). For this reason, the approximate integration [4] is v
emanding and standard numerical integration method
ised for smooth functions, such as Gaussian quadrature
ds, are inefficient. To overcome this problem, powder a
ging in the context of magnetic resonance has always
erformed by a multiplex algorithm that exploits all integra
valuations. As a preliminary step, the frequency interva

nterest is divided intoM subintervals of constant widthD and
entered aboutvm. Then, the line position and amplitude
valuated at one orientation and the product of the line am

ude and the weight coefficient is added to the subinterv
hich the computedv0 falls. The procedure is repeated for
rientations in the chosen spherical code and finally the
litudes accumulated in the subintervals approximate the
er lineshape. Clearly, no integrand evaluation is lost as tM

ntegrals I N(vm) are calculated together. The scope of
aper is limited to this multiplex algorithm and does

nclude other subsidiary methods such as interpola
chemes.
In the present work, we try to keep an unbiased judgme

1) comparing simulated spectra with exact references
ccurately defining the merit figures; (3) exploring a rang
appropriate also for demanding simulations; (4) separ
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290 ALESSANDRO PONTI
iscussing the efficiency and its orientation dependence
rocedure implementing the above points is now describ
ome detail. It is important that numerically integrated spe
e compared with an unbiased reference spectrum. The
ractice of using a spectrum simulated with a very largeN as
reference is prone to systematic error. Indeed, such a

nce favors spectra simulated by the same type of code ov
ther ones; moreover, the latter are not correctly assessed

hey are ranked by their similarity to the reference code an
o the true spectrum. To build a correct reference, one h
nd an exact formula for the powder lineshape. When the
amiltonian only consists of the rhombic Zeeman interac

v1 Þ v2 Þ v3), the analytical powder lineshape is availa
oth for the secular (13) and for the nonsecular Hamiltoni
14, 15), with d-function component lineshape. At the bes
ur knowledge, exact powder lineshape expressions for
omplex spin Hamiltonians with rhombic symmetry have
een obtained. We therefore choose both secular and non

ar fully rhombic spectra as reference. Full rhombicity,
pposed to thev1–v2 Þ v2–v3 case, andd-function lineshape
s opposed to broader and smoother shapes, provide a
tringent test that should best discriminate between the s
cal codes. Finally, it must be taken into account that, for la
, I N(vm) does not converge toS(vm), but rather to th
verage ofS(v) over themth subinterval, as pictured in Fig.
ccordingly, the simulated spectrum must be compared

he reference spectrumR(vm) obtained as

R~vm! 5
1

D E
vm2D/ 2

vm1D/ 2

S~v!dv. [6]

As basic figure-of-merit, we use the discrepancyD(N) be-

FIG. 1. Schematic illustration of the convergence limit of the approxim
ineshapeI N(vm). The value of true spectrumS(v) (thick curve) at the
ubinterval centervm is marked by a black square, whereas the averageR(vm)
f S(v) over the subinterval is represented by a horizontal line. The ha
ircles underS(v) represent the result of the multiplex integration algorit

.e., the orientations at which the resonance frequencyv0 falls in the subin
erval. The valueI N(vm) of the simulated spectrum is the number of circ
ivided by the subinterval width. WhenN is large,I N(vm) converges toR(vm)
ather than toS(vm), as can be easily seen by reordering the circles in
ectangular array (open circles). Hence,R(vm) is the appropriate reference
omparison with simulated spectra.
he
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ween the reference spectrumR and the approximate spectru
N:

D~N! 5 H 1

M O
m51

M F I N~vm! 2 R~vm!

R~vm! G 2J 1/ 2

. [7]

uchD(N) equally weights the error from different parts of
pectrum since it contains the sum of the squaredrelative
esiduals. The discrepancy has been measured forN 5 2n, n 5
, 9, . . . , 20, that is, 256# N # 1,048,576, arange large
nough to fully exploit the spherical codes and to cover
anding simulations such as those of large-anisotropy tr

ion-ion EPR spectra. The efficiency of a spherical cod
ummarized by the convergence rater and the prefactorp that
re obtained by a least-squares fit to the model powe
quation

D~N! 5 pNr. [8]

The efficiency of spherical codes has to be studied
ifferent orientationsP q (q 5 1, . . . , Q) of the referenc

rame in which the spherical codes are constructed with re
o the CRF, where each orientation is represented by
uler angles (a, b, g) (16). Note that the symmetry of th
roblem allows us to choose theP q within 0 # a, b, g # p/2.
hen there is a single dominating anisotropic interactio
hen several interactions share their principal axes, we

nterested in finding thatP q which yields the best efficiency.
his case, Eqs. [7] and [8] are sufficient to analyze the
iency orientation by orientation. When several anisotr
nteractions with noncoincident principal axes are present,
f them is differently oriented with respect to the CRF. In s
situation, one would know the average efficiency of

pherical code, and also if and to what extent spectral fea
ue to different interactions are reproduced with unequa
uracy, because this is a source of systematic error (9). In order
o assess the average efficiency of the code, we compu
ean discrepancy

D# ~N! 5
1

Q O
q51

Q

D~N, Pq!, [9]

hereD(N, P q) is the discrepancy of a spherical code w
rientationP q and N integration points, and model it to t
ower law in Eq. [8]. The rotational invariance may be stud
y computing the relative standard deviation of the discrep

d

a
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291SPHERICAL CODES FOR POWDER LINESHAPES
S~N! 5
s@D~N!#

D# ~N!

5
1

D# ~N! Î 1

Q 2 1 O
q51

Q

@D~N, Pq! 2 D# ~N!# 2, @10#

hich measures the relative spread of the discrepancy ab
ean. A global measure of the rotational invariance of
fficiency is the mean relative standard deviation

S# 5
1

K O
k51

K
s@D~Nk!#

D# ~Nk!
, [11]

hereK is the number of spherical codes of different sizeNk.
he efficiency of an ideal code does not depend onP, that is,
(N) 5 S# 5 0.

SPHERICAL CODES

The efficiency of the above described multiplex integra
lgorithm relies on the choice of the spherical code, that is

ntegration points (u i , f i) and the weightswi . All spherical
odes that were found in the literature have been conside
ll their variants; besides, spherical codes based on the So
ntonov–Saleev method (17) and codes from Refs. (9, 10, 18)
ave been applied for the first time to the simulation of pow
pectra. In total, 23 codes have been studied. In this sectio
pherical codes are only briefly described and the read
eferred to the literature for further detail; explicit formul
hich cannot be found in the literature, are given in
ppendix. Spherical codes can be divided into two gro
odes adapted from methods of integration on a two-dim
ional planar region, and codes devised for integration o
nit sphere. We begin considering the former group.
Several planar integration methods have been applie

owder averaging by mapping the integration points from
lane onto the unit sphere by means of an inverse cartogr
rojection (19, 20). The simplest choice is the plate-carre´ pro-

ection that maps the2p , x # p, 0 # y # p rectangle to
2 by the transformation

f 5 x, u 5 y. [12]

or instance, the spherical code obtained by plate-carre´ pro-
ection of a rectangular grid, also known as the apple-

ethod (4), is portrayed in Fig. 2a. Each point is given
dditional weightwi 5 sin(u i) to account for the approachi
f the meridians near the poles, a fact that may degrad
erformance of the underlying method. Conversely, equal
rojections do not require additional weight factors. Am

hese, the two most widespread are the Lambert cylind
its
e

n
e

in
l’–

r
the
is

,
e
s:
n-
he

to
e
hic

el

he
ea
g
l,

hich transforms the2p , x # p, 21 # y # 1 rectangle
o S2 by

f 5 x, u 5 arccos~ y!, [13]

nd the sinusoidal, which maps the2p sin(y) , x # p
in(y), 0 # y # p region toS2 by

f 5
x

sin~ y!
, u 5 y. [14]

he Lambert cylindrical projection of a rectangular grid,
eady known as equator centered grid (5) or spherical grid (9),
ccounts for the approaching meridians by taking equal ste
os(u) instead ofu (see Fig. 2b). The sinusoidal projection
rectangular grid, already known as polar centered grid (5) or

gloo method (8), compensates the approaching meridian
aking the number off-steps along a parallel proportional

he length of the parallel itself, as can be seen in Fig. 2c. M
ther cartographic projections are known, but a prelimin
urvey indicated that significant improvement over the t
bove projections should not be expected. Therefore,
ifferent spherical codes (labeled PC, Cyl, and Sin) ca
enerated from each of the methods described in the follow
The familiar rectangular grid method (1, 4) consists in di

FIG. 2. Inverse cartographic projections used to transform integr
oints from a planar region (left) to the upper half of the unit sphere (ri
he integration points (dots) constitute an open rectangular grid to whic
sual meridian–parallel grid is superimposed. (a) Plate-carre´ projection; (b)
ambert cylindrical projection; (c) sinusoidal projection. The projected c
iffer especially in the polar region, where points are too crowded (a)
parse (b), and evenly distributed (c).



v Th
i igs
a f th
s (
u um
b rta
t mu
a n
v -bi
p m
m CW
F ift
l –
A e
fi se
m f th
Z ion
w
l -

v inates
a

octa-
h
c
a l
G d to
p
c rst
d unit
s rian-
g gle
v ood
a E
c
r larly
t ed as
b have
b FM

le.
( (154);
( ); (o)
S ; (v) LEB
(

292 ALESSANDRO PONTI
iding the integration region into equal subrectangles.
ntegration points are chosen at the centers (open form, F
nd 3a–3c) or at the vertices (closed form, Fig. 3d–3f) o
ubrectangles. The Monte Carlo (MC, Fig. 3g–3i) method2)
ses couples of uniformly distributed (pseudo)-random n
ers as the coordinates of the integration points. It is impo

o choose a good random-number generator to avoid as
s possible correlation between the points, since this ca
erely affect the efficiency. In the present work a 64
seudo-DES hashing generator (17) is used. The quasi-rando
ethods such as that by Zaremba–Conroy–Wolfsberg (Z
ig. 3j–3l) (21–23) optimized for anisotropic chemical-sh

ineshape by Koons and co-workers (7), and that by Sobol’
ntonov–Saleev (SAS, Fig. 3m–3o) (17), here applied for th
rst time to powder averaging, have found widespread u
ultidimensional numerical integration. The coordinates o
CW integration points are obtained by a global optimizat
hich becomes troublesome for very largeN. In fact, the

argest available set in Ref. (7) hasN 5 16,574.This disad

FIG. 3. Examples of spherical codes on the upper half of the unit sp
a) Open PC grid (N 5 150); (b)open Cyl grid (160); (c) open Sin grid (1
g) PC MC (160); (h) Cyl MC (160); (i) Sin MC (174); (j) PC ZCW (158);
in SAS (158); (p) open ASG (144); (q) closed ASG (144); (r) open SO

151); (w) SPIRAL (160). FM and REPULSION codes are defined on th
e
. 2
e

-
nt
ch

se-
t

,

in
e
,

antage does not plague the SAS method, where coord
re generated by closed formulas.
The second group of spherical codes comprises the “

edral” Alderman–Solum-Grant (ASG) (3) and SOPHE (8)
odes, the “repulsive” codes by Fliege and Maier (FM) (18)
nd by Bak and Nielsen (REPULSION) (9), the spherica
aussian-quadrature code by Lebedev (LEB) as applie
owder averaging by Ede´n and Levitt (10), and the SPIRAL
ode (6, 24). The ASG code (Fig. 3p–3q) is obtained by fi
ividing each face of the octahedron inscribed in the
phere into equilateral triangles and then projecting the t
ular mesh ontoS2. The code comprises either the trian
ertices (closed form) or the centroids (open form). A g
pproximation of the weightswi has been given. The SOPH
ode (Fig. 3r–3s) is obtained by partitioningS2 into triangular
egions (which are not spherical triangles, however), simi
o the ASG code. Closed and open forms can be obtain
efore. At the best of our knowledge, accurate weights
een computed here for the first time (see Appendix). The

re. For the sake of clarity,N is small and the meridian–parallel grid is also visib
); (d) closed PC grid (150); (e) closed Cyl grid (160); (f ) closed Sin grid
Cyl ZCW (158); (l) Sin ZCW (101); (m) PC SAS (160); (n) Cyl SAS (160
E (144); (s) closed SOPHE (144); (t) FM (289); (u) REPULSION (232)
holeS2 (see text).
he
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(k)
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293SPHERICAL CODES FOR POWDER LINESHAPES
nd REPULSION codes (Fig. 3t–3u) are obtained by dis
ting points onS2 so that a target function is minimized. T

arget function for FM is the sum of the inverse Euclid
istances between the points (proportional to the electro
otential energy), whereas for REPULSION it is the sum o

nverse geodetic distances onS2 (length of great circle arcs
oth codes are usually generated on the wholeS2, but they can
e used as such to average over one half ofS2 since they lac
n inversion center. The LEB code withN orientations (Fig
v) is generated by requiring that all spherical harmonic
rder L # Lmax be exactly integrated, whereN > (Lmax 1
)2/3. Therefore, an integral can be accurately computed
orientations when the integrand can be accurately expr

s a linear combination of the spherical harmonics up to
ncluding orderLmax. The SPIRAL code (Fig. 3w) was fir
pplied to powder averaging in Ref. (6), where the coordinate
f the integration points were obtained by optimization. La

hese coordinates were expressed analytically in the cont
agnetic resonance imaging (24) as follows. Consider th

pherical spiral defined by the parametric equations

u 5 arccos~t!, f 5 c arcsin~t!,

21 # t # 11, c @ p, [15]

here 2p/c is the spiral turn and 2c is the spiral length from
he south to the north pole. This curve uniformly coversS2 in
he sense that equalt intervals correspond to segments of
nit sphere with equal area. To obtain a uniform disc
ampling ofS2, the integration points are chosen on the sp
t a distance equal to the spiral turn. The spiral subdivision
e actually performed both in open and in closed form. H
ver, there is no noticeable difference between them

herefore, only the open form is considered in the follow
hort C programs to generate the described spherical cod
vailable at http://www.csrsrc.mi.cnr.it/;ponti.

RESULTS AND DISCUSSION

Magnetic resonance spectra have been simulated for
hombic Zeeman interaction, in both the secular and the
ecular case, withM 5 100 points on the frequency axis a
5 2n (n 5 8, 9, . . . , 20) orientations. Some codes, nam

CW, FM, REPULSION, and LEB, can be found only fo
arrower range ofN. Simulations have been carried out fo
et ofQ 5 125 different orientations of the SCRF with resp
o the CRF consisting of a 53 5 3 5 closed grid within th
egion 0# a, b, g # p/2 of the space of the Euler angles. T
losed grid covers the studied (a, b, g) region well in the sens
hat a refinement of the grid does not affect the average va
n total, 32,250 powder spectra have been computed
omputations have been performed by means of a
LTRA-2 workstation.
The most general result is that there is no significant
-

tic
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iency difference between the secular and the nonsecular
his equivalence suggests that the following discussion
onclusions, rigorously valid only for powder lineshapes du
single Zeeman interaction, have a general validity for s

ineshapes. For the same reason, it suffices to report the r
or the nonsecular case. A logarithmic plot of the orientat
veraged discrepancyD# (N) against the number of pointsN is
hown as Fig. 4. The best-fit lines are the dotted lines in F
nd the regressed parametersp and r are reported in Table
long with the correlation coefficientr. It appears that th

FIG. 4. Logarithmic plots of the mean discrepancyD# against the numbe
f pointsN. The best-fit curves appear as straight dotted lines. (a) GRID c
pen (full) circles: open (closed) PC; open (full) squares: open (closed
pen (full) triangles: open (closed) Sin. (b) MC and SPIRAL codes. Cir
C PC; squares: MC Cyl; triangles: MC Sin; stars: SPIRAL. (c) ZCW co
ircles: PC; squares: Cyl; triangles: Sin. (d) SAS codes. Circles: PC; sq
yl; triangles: Sin. (e) ASG and SOPHE codes. Open (full) triangles:

closed) ASG; open (full) circles: open (closed) SOPHE. (f) Circles:
quares: REPULSION; triangles: LEB; note the different vertical range in
anel.
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294 ALESSANDRO PONTI
ean discrepancy can be satisfactorily represented b
ower law Eq. [8] for all spherical codes. It is necessar
emark that the errors in Table 1 are largely overestimate
he least-squares method because the regression residu
ot normally distributed.2 Therefore, the differences betwe

he parameters are more meaningful than it may appear a
ight. The interplay ofp and r may be confusing in th
ssessment of the code efficiency. Therefore, we regress
umber of points necessary to attainD# 5 0.01, and th
inimumnumber of points needed to achieveD 5 0.01within

he studied set of orientations. The choice of 0.01 as refe
iscrepancy is somewhat arbitrary even if it corresponds
atisfactory agreement between simulated and true lines
s shown in Fig. 5. Not to be misled by this arbitrary cho

hese two quantities have been computed also forD 5 0.1; as
hese do not show anything new, they are only touched up
he following discussion. Finally, the mean relative stand
eviation S# of the orientation-averaged discrepancy (cf.

11]) is also reported in Table 1. The spherical codes are
nalyzed in some detail.

2 Since we do not fit experimental noisy data to the correct model but
ata to an approximate model, the residuals do not follow a normal (Gau
istribution. Because of the rapid fall-off of the normal distribution, points
re more-than-average displaced from the fitted curve cause a misl
verestimate of the parameter errors.

TAB
Best-Fit Parameters r and p and Correlat

of the Mean Discrepanc

Spherical code r p

rid PC open 20.71 6 0.01 51 6 7 2
rid Cyl open 20.62 6 0.02 30 6 5 2
rid Sin open 20.74 6 0.01 49 6 5 2
rid PC closed 20.73 6 0.02 60 6 10 2
rid Cyl closed 20.59 6 0.01 34 6 2 2
rid Sin closed 20.70 6 0.01 40 6 4 2
C PC 20.4976 0.002 11.26 0.2 2
C Cyl 20.5026 0.001 10.66 0.1 2
C Sin 20.4996 0.002 10.36 0.2 2
CW PC 20.62 6 0.02 21 6 3 2
CW Cyl 20.63 6 0.02 19 6 2 2
CW Sin 20.58 6 0.01 14 6 1 2
AS PC 20.69 6 0.02 42 6 10 2
AS Cyl 20.70 6 0.02 38 6 8 2
AS Sin 20.66 6 0.01 28 6 4 2
SG open 20.73 6 0.01 57 6 6 2
SG closed 20.75 6 0.01 71 6 6 2
OPHE open 20.71 6 0.01 45 6 4 2
OPHE closed 20.75 6 0.01 68 6 6 2
M 20.5326 0.006 11.86 0.4 2
EPULSION 20.5546 0.005 13.46 0.3 2
EB 20.51 6 0.01 13.86 0.6 2
PIRAL 20.73 6 0.01 41 6 4 2

a The number of pointsN necessary to achieve a mean discrepancyD# 5 0.0
elative standard deviationS# are also reported. All errors are one standar
he
o
y
are

rst

the

ce
a

pe,
,

in
d
.
w

The six grid spherical codes show marked differences
ween themselves. The two cylindrical grids have a low
iency mostly because of the small convergence rate, a
refactor is rather low, while the plate-carre´ and sinusoida
odes have a much better efficiency. The reason for this c
raced back to the different uniformity of covering near
ole (see Figs. 2 and 3a–3f). The three Monte Carlo codes
ssentially the same low convergence rater 5 20.5 typical of

hese methods, which translates in a rather poor efficien
owder averaging, despite the very good prefactor. In fac
chieveD# 5 0.01, MCcodes require about six times as m
oints as other codes (but only two times forD# 5 0.1). The
yl and Sin versions are almost equivalent and slightly s

ior to the plate-carre´. The quasi-random ZCW and SAS cod
how similar efficiency since the differences inp andr almost
ancel. Unfortunately, the difficulty of computing ZCW cod
akes unfeasible their extension below the threshold ofD# 5
.03. Conversely, the SAS codes, here applied for the

ime to powder averaging, can be easily computed also for
arge N. They are slightly more efficient than the ZCW

# 0.1. Thesuperiority of the cylindrical variant of the ZC
nd SAS codes is due, on one hand, to the weights need

he plate-carre´ code, which degrade performance, and, on
ther hand, to the fact that these method has been devis

ct
n)
t
ing

1
Coefficient r from the Least-Squares Fit

# (N) to Model Eq. [8]a

1023

N(D# 5 0.01)
1023 min

[N(D 5 0.01)] S#

982 1756 50 83 0.286 0.07
964 4106 170 103 0.406 0.10
991 1016 20 68 0.206 0.05
974 1426 48 87 0.256 0.06
994 10206 180 191 0.296 0.07
989 1346 29 88 0.216 0.05
999 13606 80 992 0.086 0.01
999 10706 50 772 0.076 0.01
999 10906 70 850 0.076 0.01
966 2166 78 119 0.166 0.08
970 1756 59 84 0.176 0.10
986 2946 68 119 0.146 0.06
941 1666 85 116 0.176 0.06
950 1276 60 97 0.156 0.05
981 1746 51 119 0.116 0.03
988 1476 34 87 0.306 0.03
992 1416 26 83 0.316 0.05
993 1476 26 82 0.286 0.02
993 1256 22 69 0.256 0.03
995 6006 100 297 0.086 0.01
999 4416 53 112 0.086 0.01
991 13106 330 172 0.266 0.04
993 836 15 55 0.206 0.07

theminimumN to achieveD 5 0.01within the studied region, and the me
eviation (see text for their significance).
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295SPHERICAL CODES FOR POWDER LINESHAPES
rectangular region and not for the oval region over which
nverse sinusoidal projection is defined. The “octahedral” A
nd SOPHE codes show high convergence rates be
0.70 and20.75. Their effect on the efficiency is, howev

ounteracted by the large prefactors. The slight differenc
andp almost vanish when we considerN(D# 5 0.01),which

s close to 140,000 for all four codes. The “repulsive” FM
EPULSION codes and the Gaussian-quadrature LEB
how very good prefactors (12–14) but also low converg
ates close to20.5. Therefore, their efficiency is rather po
nd close to that of MC codes. Finally, the SPIRAL code t
ut to be the most efficient. Its performance arises mainly

he high convergence rate.
The relative standard deviationS(N) does not show an

lear-cut trend as a function ofN. The only discernible featu
s that it grows forN , 104 and then diminishes or remai
onstant. Therefore, we now consider its meanS# as a globa
easure of the rotational invariance. First, it should be
arked that the sinusoidal form always shows a better in
nce than the plate-carre´ and cylindrical forms of spheric
odes adapted from bidimensional methods. The MC, FM
EPULSION codes show the best rotational invariance: T
fficiency can be expected to change less than 10% withi
# a, b, g # p/2 region of the space of the Euler angles.
AS and ZCW codes rank second with an expected chan

FIG. 5. Comparison of simulated powder lineshape for a nonsecular
hombic Zeeman Hamiltonian with the exact reference spectrum, picto
howing the significance of discrepancyD 5 0.1 and D 5 0.01. (a)
ineshape simulated by SPIRAL code withN 5 4000, resulting in D 5
.1055; (b)lineshape simulated by SPIRAL code withN 5 56,000,resulting

n D 5 0.0100; (c) reference spectrum obtained by averaging the e
ineshape as in Eq. [6].
e

en

in

de
e

s
m

-
ri-

d
ir
he
e
of

bout 15%. Sinusoidal grid and SPIRAL codes haveS# > 20%,
hile SOPHE, ASG, LEB, and the other grid codes can
p to 30%. Note, however, that the poor invariance of the
ode is due to a single outlier at the largestN 5 385. The Cy
pen grid featuresS# 5 40%. It should be noted that the cod
ith the best rotational invariance also have the lowest
ctors.
When there is one dominating anisotropy, the orientatioP

an be chosen at will. We therefore also looked for the o
ations at which a minimumN is needed to achieveD 5 0.01
see Table 1). Even if the efficiency range is compressed
ank based on the minimumN is the same as before. T
rientation at which the minimal value is reached canno
asily rationalized (data not shown). The spherical codes
e, however, divided in three groups. MC and SAS codes s

ittle change within the 0# a, b, g # p/2 region; the LEB an
PIRAL codes perform best when their principal axes coin
ith those of the anisotropic interaction; all other codes s

heir best efficiency when their principal axes donot coincide
ith those of the interaction.
Considering globally all spherical codes, the following c

lusions can be drawn. (1) Monte Carlo codes have low
ergence rates that yield a poor efficiency: More than6

rientations are needed to achieve a 1% discrepancy. How
hey are almost independent of the relative orientation o
RF and the SCRF. If one can afford a factor 6–10 in c
utation time, a possible source of error in the determinatio
nisotropic interaction matrices can be avoided. Note that
factor reduces to about 2 for 10% achieved discrepa

ecall also that the integration error can be computed onl
he Monte Carlo method. (2) Planar rectangular grids proje
n the unit sphere by cylindrical projection, i. e., grids w
qual steps in cos(u) and f, have found widespread use,

hey are definitely among the worst spherical codes for po
veraging. In fact, they are less efficient than all other c
except for MC) and their efficiency is very sensitive to
elative orientation of the CRF and the SCRF. (3) The o
rid codes (except for open Sin), the ZCW, SAS, ASG,
OPHE codes perform similarly with respect to the efficie

hey require 1–33 105 orientations to achieveD# 5 0.01.
owever, they differ in the rotational invariance, the qu

andom codes being the best ones. (4) For FM, REPULS
nd LEB we have to base our analysis on a rather limited r
f N. Given this caveat, it can be concluded that these c
ave a poor efficiency because of the low convergence
owever, their excellent prefactor and rotational invaria

except LEB) suggest that they should be good codes fo
emanding tasks, such as simulation of rotating-powder s

ra, since when the neededN is low the prefactor is mor
mportant than the convergence rate. The efficiency of t
odes could be better than expected forN . 1000, but it is
nlikely that they can be so extended, since it is very diffi

o compute them. This is particularly true for FM and REPU
ION, which are generated by a nonlinear, nonconvex

y
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296 ALESSANDRO PONTI
trained global minimization (18) in the presence of an exp
entially growing number of local minima. It has be
stimated to be about 50 forN > 100 and about 8000 forN >
00 (25). Such extension is certainly a formidable task.
pen Sin grid and SPIRAL show the highest efficiency.D# 5
.01 is achieved by about (or less than) 105 points. In both
ases, their performance arises from a high convergence
nfortunately, their rotational invariance is not very good

act probably related to the large prefactors.

CONCLUSIONS

A quantitative unbiased methodology to assess the effic
f spherical codes in powder averaging of magnetic reson
pectra has been proposed. It has been applied to all pub
pherical codes plus new ones based on the Sobol’–Anto
aleev method. Equal simulation efficiency has been mea

or both nonsecular and secular spectra, an equivalence
esting that the present conclusions may have general va
ost spherical codes (exceptions are Monte Carlo, cylind
rid, “repulsive,” and Gaussian-quadrature codes) req
–3 3 105 integration points to achieve 1% average disc
ncy (3–63 103 to reach 10%). Among these, open Sin g
nd SPIRAL codes stand out for their efficiency. It is strik

hat the simple open Sin grid code is as efficient as the SPI
nd, even more, that it performs better than sophistic
odes. However, one should also be aware that, with the a
xceptions, the studied codes differ at most by a factor of
fficiency. As for the rotational invariance, the best codes

he Monte Carlo and the “repulsive.” It is certainly disappo
ng that such codes show poor efficiency, but it should
ecalled that the computational effort they require may
fforded, especially for easy simulations and/or large ac
ble discrepancy.
Finally, it seems unlikely that new spherical codes can

evised that largely outperform the known ones. To obta
arge improvement in powder averaging of magnetic reson
pectra, a new approach to the problem may be more fru
urther investigations in this direction are presently b
arried out in our laboratory (26).

APPENDIX

In this appendix are collected detailed formulas that ca
e easily found in the literature about powder averaging.

lderman–Solum–Grant Codes

The following formulas refer the first octant of the u
phere; the code on the other octants can be obtaine
ymmetry.M is the number of subintervals on each octahe
dge. The Cartesian coordinates of the vertices of the trian
esh onS2 and the corresponding weights for the closed f
f the code are
)

te.

cy
ce
ed
v–
red
ug-
ty.
al
re
-

L
d
ve
in
re
-
e
e
t-

e
a
ce
l.

g

ot

by
n
lar

xj 5
j

M
, j 5 0, 1, . . . ,M;

yk 5
k

M
, k 5 0, 1, . . . ,M 2 j ;

zjk 5 1 2 xj 2 yk, r jk 5 Îx j
2 1 yk

2 1 zjk
2

wjk 5 r jk
23 3 H1/6 vertex points

1/ 2 edge points
1 face points

M 5
23 1 Î9 1 8~N 2 1!

2
. [A1]

he Cartesian coordinates of the centroids of the mesh
les onS2 and the correspondent weights for the open form

he code are

xj 5
j 2 2/3

M
, j 5 1, 2, . . . ,M; yk 5

k 2 2/3

M
,

k 5 1, 2, . . . ,M 1 1 2 j ~UP triangles!

xj 5
j 2 1/3

M
, j 5 1, 2, . . . ,M 2 1; yk 5

k 2 1/3

M
,

k 5 1, 2, . . . ,M 2 j ~DOWN triangles!

wjk 5 r jk
23, M 5 ÎN, [A2]

here zjk and r jk are defined as above. In both cases,
pherical coordinates of the integration points onS2 are easily
btained as

u jk 5 arccos~ zjk/r jk!, f jk 5 arctan~ yk/xj!. [A3]

OPHE Codes

The following formulas refer to the first octant ofS2; the
ode on the other octants can be obtained by symmetry.M is
he number of subintervals alongu. In closed form, the inte
ration points are the vertices of the pseudotriangular me

u j 5
j

M

p

2
, j 5 0, 1, . . . ,M; fk 5

k

M 2 j

p

2
,

k 5 0, 1, . . . ,M 2 j ;

wjk 5
cos~u j!

M 2 j 1 1
3 H1/6 vertex points

1/ 2 edge points
1 face points

,

M 5
23 1 Î9 1 8~N 2 1!

2
, [A4]

hereas in open form they correspond to the centroids o
seudotriangles forming the mesh:
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u jk 5
p

2
3 5

j 2 1/3

M
k odd ~UP pseudotriangles!

j 2 2/3

M
k even~DOWN pseudotriangles!

,

f jk 5
k 2 1/ 2

2j 2 1
, j 5 1, 2, . . . ,M;

k 5 1, 2, . . . , 2j 2 1

wjk 5

cosS j

M

p

2D
2j 2 1

, M 5 ÎN. [A5]

he weightswjk have been obtained by a modification of
rocedure outlined in Ref. (8). For the open form, the weig
jk is the area of the pseudotriangle surrounding the cen

k; for the closed form it is the pseudohexagonal region (
f the pseudotriangle) surrounding the vertexjk.

PIRAL Code (Open Form)

ti 5
i 2 1/ 2

N
, i 5 1, 2, . . . ,N

u i 5 arccos~t i!, f i 5 ÎpN arcsin~t i!, wi 5 1. [A6]

n analytic expression for the weights could not be fou
herefore, a Voronoi tessellation ofS2 has been performe
sing the SPIRAL code as the set of generators. The are

he Voronoi cells are distributed about the correct value 4p/N
ith standard deviation less than (4p/N)/100 for N $ 1000
nd a large positive kurtosis, meaning that the area distrib

s much narrower than a Gaussian distribution with the s
idth. The assumption of unit weights is thus substantiat
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